
Generalized Symbolic Execution for Model Checking and Testing

- testing:
- requires manual input
- typically done for a few nominal input cases
- not good at finding concurrency bugs
- not good at dealing with complex data structures

void Executive::
startExecutive(){
runThreads(); …}

void Executive::
executePlan(…) {
while(!empty)
executeCurrentPlanNode();

} …

Rover Executive

execute action

environment/
rover status

Input plan

large environment
data

concurrency,
dynamic data (lists, trees)

- model checking:
- automatic, good at finding concurrency bugs
- not good at dealing with complex data structures
- feasible only with a small environment

- and a small set of input values

Current practice in checking complex software:

Future mission software:
- concurrent
- complex, dynamically allocated data

structures (e.g., lists or trees)
- highly interactive:

- with complex inputs
- large environment

- should be extremely reliable
complex input

structure

Our novel symbolic execution framework:
- extends model checking to programs that have
complex inputs with unbounded (very large) data
- automates test input generation

(= “unknown yet”)

input
program

Model
checking

Program
instrumentation

Decision
procedures

instrumented
program

correctness
specification

continue/
backtrack

counterexample(s)/
test suite

[heap+constraint+thread scheduling]

Framework:

- modular architecture: can use different model
checkers/decision procedures

class Node {
int elem;
Node next;

Node deleteFirst() {
if (elem < 10)

return next;
else if (elem < 0)

assert(false);
… } }

Code

-“simulate” the code
using symbolic values
instead of program data;
enumerate the input
structures lazily

true false

e0

Analysis of “deleteFirst”
with our framework

e0 < 10 e0 ≥ 10

true

FALSE

e0 ≥ 10 /\ e0<0

Precondition:
acyclic list

e0nulle0 e0 e1

Numeric Constraints

Decision Procedures

Structural Constraints

Lazy initialization+
Enumerate all structures

Explanation of Accomplishment
• POC: Corina Pasareanu (Kestrel Technology LLC) and Willem Visser (RIACS/USRA)
• Joint work with Sarfraz Khurshid (MIT)
• Background: Future mission software systems, which will be concurrent and will manipulate

complex dynamically allocated data structures, should be extremely reliable. These kinds of systems
are known to be hard to test. Even using model checking to discover errors is inadequate due to the
large and complex input domains of such systems.

• Accomplishment: A novel symbolic execution framework was developed and an algorithm
implemented that enables model checking of programs that have complex inputs with unbounded
(very large) data. The algorithm also automates test input generation.The symbolic execution
algorithm has been implemented in the Java PathFinder model checker toolset. It has been used to
generate test inputs for code coverage (i.e., condition coverage) of an Altitude Switch used in flight
control software.

• Future Plans: We intend to apply our framework to the analysis of other complex systems, including
the Mars K9 Executive prototype. We plan to investigate the application of abstraction techniques in
the context of our framework.

• Overview of Algorithm: We provide a two-fold generalization of traditional symbolic execution
methods. One, we define a source to source translation to instrument a program, which enables
standard model checkers to perform symbolic execution of the program. The program
instrumentation enables a model checker to automatically explore different configurations of the
input data structures and manipulate logical formulae on program numeric values (using a decision
procedure). Two, we give a novel symbolic execution algorithm that handles dynamically allocated
structures (e.g., lists and trees), primitive data (e.g., integers and strings) and concurrency. To
symbolically execute a program, the algorithm uses lazy initialization, i.e., it initializes the
components of the program’s inputs on an ``as-needed'' basis, without requiring an a priori bound on
input sizes. The algorithm uses preconditions to initialize inputs only with valid values.

	Explanation of Accomplishment

